теория нечетких множеств

I2207

Где раздобыть литру по теории нечетких множеств, желательно про трапезоидные нечеткие числа?

choconasty

Попробуй связаться по ICQ с .
Это пятикурсник мехмата, и занимается именно нечёткими множествами.

Misho

Я тоже ими занимаюсь, могу подсказать.
http://intsys.msu.ru/staff/ryzhov/FuzzySetsTheoryApplication...
Trapezoid Fuzzy Nymbers - нечёткие числа с функцией принадлежности в виде трапеции.

Misho

Объяснение для домохозяек. Везде в тексте заменить 1000 на 1.
A fuzzy number is a quantity whose value is imprecise, rather than exact as is the case with "ordinary" (single-valued) numbers. Any fuzzy number can be thought of as a function whose domain is a specified set (usually the set of real numbers, and whose range is the span of non-negative real numbers between, and including, 0 and 1000. Each numerical value in the domain is assigned a specific "grade of membership" where 0 represents the smallest possible grade, and 1000 is the largest possible grade.
In many respects, fuzzy numbers depict the physical world more realistically than single-valued numbers. Suppose, for example, that you are driving along a highway where the speed limit is 55 miles an hour (mph). You try to hold your speed at exactly 55 mph, but your car lacks "cruise control," so your speed varies from moment to moment. If you graph your instantaneous speed over a period of several minutes and then plot the result in rectangular coordinates, you will get a function that looks like one of the curves shown below.

The red curve (top) represents a triangular fuzzy number; the blue curve (middle) shows a trapezoidal fuzzy number; the green curve (bottom) illustrates a bell-shaped fuzzy number. These three functions, known as membership functions, are all convex (the grade starts at zero, rises to a maximum, and then declines to zero again as the domain increases). However, some fuzzy numbers have concave, irregular, or even chaotic membership functions. There is no restriction on the shape of the membership curve, as long as each value in the domain corresponds to one and only one grade in the range, and the grade is never less than 0 nor more than 1000.
Fuzzy numbers are used in statistics, computer programming, engineering (especially communications and experimental science. The concept takes into account the fact that all phenomena in the physical universe have a degree of inherent uncertainty.

I2207

может, есть у кого-нибудь книженция Zadeh L.A. "Calculus of fuzzy restrictions"?

Misho

Я в этом сомневаюсь. А что именно тебя интересует? какие темы?

I2207

Нужно про то, как работать с трапезоидными числами

Misho

Если тебя интересует только арифметика, можно в инете поискать про fuzzy numbers. В электронном виде у меня, кажется, про более глубокие вещи ничего нет. Попробуй, действительно, garald'а спросить.
Оставить комментарий
Имя или ник:
Комментарий: