Найти значение функции

Komandor

ф-ция удовлетворяет ур-ию:
y'(x) = ln(2+sin(x
при этом y(0) = 3.
Требуется найти y(pi).
Это вообще аналитически решается?

fabio

4228164502-1.278422570*I

Komandor

но численно получается вообще-то вещественный ответ!

sverum

Известно y(pi/2) ?

griz_a

что значит как решается?
интегрируется :)

Komandor

известно только значение от "0"

sverum

что значит как решается?
интегрируется
Это вряд ли :)

Komandor

да хоть как нибудь. Но только не на счетах!

sverum

известно только значение от "0"
Ну тогда IMHO только численно.

griz_a

в смысле?
так или иначе - это интеграл. в элементарных он, вполне вероятно, не выражается, так что численно считать интеграл же.

lenmas

Это вообще аналитически решается?
В мапл уже загонял?

Komandor

Ну если не получается кроме как численно, то тема закрыта. Всем выражаю решпектование за участие в обсуждении :) .

lenmas

Ну если не получается кроме как численно, то тема закрыта. Всем выражаю решпектование за участие в обсуждении :) .
Если мапл не выдаст через спецфункции, то да, тема закрыта.

Boris

Математика выдает такое:
[math]$-2 i \left(\text{Li}_2\left(-i     \left(-2+\sqrt{3}\right)\right)-\text{Li}_2\left(i     \left(-2+\sqrt{3}\right)\right)\right)+3-\pi  \log \left(4-2     \sqrt{3}\right)$[/math]

worona

Используй формулу Тейлора
f(x)=f(x0)+f'(x0x-x0)+1/2*f''(x0x-x0)^2+...
x0=0
x=Pi
f(Pi)=3+ln(2)*Pi+1/4*Pi^2+...
Примерно в таком духе. Т.к (x-x0)^n при n->infinity не стремится к нулю, то количество слагаемых будет большое =)

lenmas

Математика выдает такое:
[math]$-2 i \left(\text{Li}_2\left(-i \left(-2+\sqrt{3}\right)\right)-\text{Li}_2\left(i \left(-2+\sqrt{3}\right)\right)\right)+3-\pi \log \left(4-2 \sqrt{3}\right)$[/math]
Во! Значит, через дилогарифмы выражается. Правда, дилогарифмы это примерно то же самое, что и неопределенный интеграл в задаче :grin: Но по крайней мере затабулированная функция :)
Оставить комментарий
Имя или ник:
Комментарий: