Закрыто. Уже помогли доказать...

coma

как доказать что сумма случ. величин - случайная величина
а то че-то не могу придумать доказательство
может кто знает?

Kirill_off

запиши 2 раза определение для с.в.

coma

не так все просто
зы: решение нашли
если кому интересно:
X - случайная величина тогда и только тогда когда множества {X < t} являются событиями для любого действительного t
Во-первых, очевидно, что если X - случайная величина, то aX+b - тоже случайная величина (a,b - фиксированные действительные числа так как при a==0 получается вообще константа, а при a!=0 множество {aX+b < t} == {X < (t-b)/a} является событием по определению измеримости X для любого t.
Далее надо доказывать, что для любого t событие {X+Y < t} == {X < t-Y} лежит в сигма-алгебре. Так как t-Y случайная величина (из написанного выше то фактически надо уметь доказывать, что для любых двух случайных величин X и Y множество {X < Y} является событием.
Но {X < Y} есть объединение по всем рациональным числам r_k (занумерованных в какой угодно последовательности) множеств {X < r_k}*{Y > r_k}
(действительно, если на элементарном исходе w оказалось X(w) < Y(w то строго между ними можно вставить какое-то рациональное число; и наоборот)
получилось счётное объединение множеств из сигма-алгебры, поэтому множество {X < Y} является событием

vovatroff

Хоть и закрыто, но все равно мне со стороны
забавно, как устроено наше математическое образование.
То, о чем идет речь, слово-в-слово повторяет известный
результат из теории меры. Что сумма измеримых функций
измерима. И доказательство такое же, слова немножко другие.
Что неудивительно, поскольку еще Колмогоров ввел аксиоматику
теории вероятностей, по сути, сведя ее к теории меры.
(Своими словами: Теория вероятностей - это реализация
теория меры (X, m) с условием m(X)=1).
Вопрос: что, теория вероятностей изучается ДО теории меры?
В результате студентам приходится дважды проходить одни и те
же результаты, просто озвученные в терминах разных областей
математики?
Или как?

mcfly67

Вопрос: что, теория вероятностей изучается ДО теории меры?
В результате студентам приходится дважды проходить одни и те
же результаты, просто озвученные в терминах разных областей
математики?
на мехмате теорвер и действан идут параллельно в 4 семестре.

roman1606

На ММ? Параллельно, в 4 семестре.
Оставить комментарий
Имя или ник:
Комментарий: