Сверхмассивная чёрная дыра в центре нашей галактики

gera2707


Анимация орбит звезд на основе фотографий 1995-2010 гг. Звёзды двигаются по кеплеровским орбитам вокруг чёрной дыры с массой ~4000000 солнечных масс. Особенно интересна звезда S0-2 с периодом обращения 15.78 года, и S0-16, которая пролетает от чёрной дыры на расстоянии 90 а.е.

Jeton89

А про S0-45 там чего-нибудь сказано? Почему она не чувствует гравитации?

kaygorod

Может она сильно ниже/выше?

toxin

Можно ли из этих наблюдений померить эффекты ОТО второго порядка?

sidorskys

А каким методом наблюдали?
P.S. Впрочем, тут у них хорошо расписано: http://www.astro.ucla.edu/~ghezgroup/gc/journey/size.shtml

otlichnica

методом смотрения в телескоп

mtk79

и последующим методом настоящих акынов "что вижу — то пою!"

Vikuschechka9

может она сильно-сильно ближе к нам? потому так и шпарит быстро

Sergey79

а почему именно черная дыра? Соотношение масса/радиус там пока еще на порядок больше шварцшильдовских. А при таких размерах там плотность - как примерно газ в атмосфере земли. Это может быть и просто плотное темное облако НЕХ-частиц.

st2006

черные дыры еще фиксятся по большому гамму или ренгеновскому (поправьте) излучению

Sergey79

Да, по джетам фиксятся. Но на картинке про джеты ничего не говорится. А те "черные дыры" у которых есть джеты - могут быть и нейтронными звездами (притом не пульсарами у которых похожие джеты.

seregaohota

Trent J. Perrotto
Janet Anderson
Megan Watzke
  
June 15, 2011
RELEASE : 11-183
NASA'S Chandra Finds Massive Black Holes Common In Early Universe
WASHINGTON — Using the deepest X-ray image ever taken, astronomers found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA's Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies.
By pointing Chandra at a patch of sky for more than six weeks, astronomers obtained what is known as the Chandra Deep Field South (CDFS). When combined with very deep optical and infrared images from NASA's Hubble Space Telescope, the new Chandra data allowed astronomers to search for black holes in 200 distant galaxies, from when the universe was between about 800 million to 950 million years old.
"Until now, we had no idea what the black holes in these early galaxies were doing, or if they even existed," said Ezequiel Treister of the University of Hawaii, lead author of the study appearing in the June 16 issue of the journal Nature. "Now we know they are there, and they are growing like gangbusters."
The super-sized growth means that the black holes in the CDFS are less extreme versions of quasars — very luminous, rare objects powered by material falling onto supermassive black holes. However, the sources in the CDFS are about a hundred times fainter and the black holes are about a thousand times less massive than the ones in quasars.
The observations found that between 30 and 100 percent of the distant galaxies contain growing supermassive black holes. Extrapolating these results from the small observed field to the full sky, there are at least 30 million supermassive black holes in the early universe. This is a factor of 10,000 larger than the estimated number of quasars in the early universe.
"It appears we've found a whole new population of baby black holes," said co-author Kevin Schawinski of Yale University. "We think these babies will grow by a factor of about a hundred or a thousand, eventually becoming like the giant black holes we see today almost 13 billion years later."
A population of young black holes in the early universe had been predicted, but not yet observed. Detailed calculations show that the total amount of black hole growth observed by this team is about a hundred times higher than recent estimates.
Because these black holes are nearly all enshrouded in thick clouds of gas and dust, optical telescopes frequently cannot detect them. However, the high energies of X-ray light can penetrate these veils, allowing the black holes inside to be studied.
Physicists studying black holes want to know more how the first supermassive black holes were formed and how they grow. Although evidence for parallel growth of black holes and galaxies has been established at closer distances, the new Chandra results show that this connection starts earlier than previously thought, perhaps right from the origin of both.
"Most astronomers think in the present-day universe, black holes and galaxies are somehow symbiotic in how they grow," said Priya Natarajan, a co-author from Yale University. "We have shown that this codependent relationship has existed from very early times."
It has been suggested that early black holes would play an important role in clearing away the cosmic "fog" of neutral, or uncharged, hydrogen that pervaded the early universe when temperatures cooled down after the Big Bang. However, the Chandra study shows that blankets of dust and gas stop ultraviolet radiation generated by the black holes from traveling outwards to perform this "reionization." Therefore, stars and not growing black holes are likely to have cleared this fog at cosmic dawn.
Chandra is capable of detecting extremely faint objects at vast distances, but these black holes are so obscured that relatively few photons can escape and hence they could not be individually detected. Instead, the team used a technique that relied on Chandra’s ability to accurately determine the direction from which the X-rays came to add up all the X-ray counts near the positions of distant galaxies and find a statistically significant signal.
NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
More information, including images and other multimedia, can be found at:
http://www.nasa.gov/chandra
and
http://chandra.si.edu

lenmas

может она сильно-сильно ближе к нам? потому так и шпарит быстро
А зачем тогда ее отображали?

seregaohota

Гипербола вид сверху это прямая :) Но видимая проекция скорости вроде относительно постоянна по анимации судя, значит далеко от черной дыры. Им надо ещё было цвет звёзд на картинке менять, типа сдвиг спектра, пропорциональный изменению скорости по лучу зрения. Или 2 синхронизированные картинки в проекциях сверху и сбоку :)
Оставить комментарий
Имя или ник:
Комментарий: