1 миллион долларов за решение математических задач

Andrey43

проблем
Дерзайте , что зря фигней заниматься, заработайте на всю ост. жизнь....
CMI - The Clay Mathematics Institute (Кембридж, Штат Массачусетс) - назвал семь нерешенных математических проблем - "Millennium Prize Problems", за решение каждой из которых будет выплачен $1 млн. К рассмотрению принимаются решения, которые были опубликованы в известном математическом журнале, причем не ранее, чем через 2 года после публикации (для всестороннего рассмотрения математическим сообществом).
Перечислим эти проблемы:

Проблема Кука (сформулирована в 1971г.).
Допустим, находясь в большой компании, Вы хотите убедиться, что там же находится Ваш знакомый. Если Вам скажут, что он сидит в углу, то Вам достаточно доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствии этой информации Вы будете вынуждены обойти всю комнату, рассматривая гостей.
Точно так же, если кто-то сообщит Вам, что число 13717421 можно представить, как произведение двух меньших чисел, непросто быстро убедиться в истинности информации, но если Вам сообщат, что исходное число можно разложить на множители 3607 и 3803, то это утверждение легко проверяется с помощью калькулятора.
Это примеры иллюстрируют общее явление: решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения. Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки.
Эта проблема является одной из нерешенных проблем логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

Гипотеза Римана (сформулирована в 1859г.).
Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например, 2, 3, 5, 7, и т.д. Такие числа называются простыми числами, и они играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди всех натуральных чисел не подчиняется никакой закономерности, однако немецкий математик Риман (1826 - 1866) обнаружил, что число простых чисел, не превосходящих x, выражается через распределение нетривиальных нулей дзета-функции Римана. Риман высказал гипотезу, не доказанную и не опровергнутую до сих пор, что все нетривиальные нули дзета-функции лежат на прямой линии. На сегодняшний день проверены первые 1500000000 решений.

Гипотеза Берча и Свиннертон-Дайера.
Математики давно заворожены проблемой описания всех решений в целых числах x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных с целыми коэффициентами. Примером алгебраического уравнения является уравнение x2 + y2 = z2. Евклид дал полное описание решений этого уравнения, но для более сложных уравнений получение решения становится чрезвычайно трудным (например, доказательство отсутствия целых решений уравнения xn + yn = zn ).
В 1970г. Юрий Владимирович Матиясевич дал отрицательное решение десятой проблемы Гильберта, т.е. не имеется никакого алгоритма, с помощью котрого можно было бы узнать, разрещимо уравнение в целых числах или нет. Но в частном случае, когда решения образуют абелево многообразие, Берч и Свиннертон-Дайер предположили, что число решений определяется значением связанной с уравнением дзета-функции в точке 1: если значение дзета-функции в точке 1 равно 0, то имеется бесконечное число решений, и наоборот, если не равно 0, то имеется только конечное число таких решений.

Гипотеза Ходжа.
В двадцатом веке математики изобрели мощные методы исследования формы сложных объектов. Основная идея состоит в том, чтобы выяснить, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности. Этот метод оказался эффективным при описании разнообразных объектов встречающихся в математике. К сожалению, при этом были не ясны геометрические обоснования метода: в некоторых случаях было необходимо прибавлять части, которые не имели никакого геометрического истолкования.
Гипотеза Ходжа состоит в том, что для особенно хороших типов пространств, называемых проективными алгебраическими многообразиями, т.н. циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, - алгебраических циклов.

Уравнения Навье-Стокса.
Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете - в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье-Стокса. Решения этих уравнений не известны, и при этом даже не известно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

Проблема Пуанкаре.
Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока "односвязна", а поверхность бублика - нет. Пуанкаре почти сто лет назад знал, что в двумерном случае односвязна только сфера, и задался аналогичным вопросом для трехмерной сферы - множества точек в четырехмерном пространстве, равноудаленных от некоторой точки. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики до сих пор ищут ответ.

Уравнения Янга-Миллса.
Уравнения квантовой физики описывают мир элементарных частиц. Почти пятьдесят лет назад, физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга-Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, включая Brookhaven, Stanford, и CERN. Поэтому калибровочная теория Янга-Миллса принята большинством физиков, несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.

joker2oo9

может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки.

Задача: перемножение двух простых чисел.
Решить ее просто, а для проверки нужно раскладывать на множители.

Vikuschechka9

Вот это-то как раз не доказано, что это сложнее...

zuzaka

> а для проверки нужно раскладывать на множители.
Ни фига. Для проверки надо всего лишь разделить.

naami_moloko

Проблема Пуанкаре.
Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока "односвязна", а поверхность бублика - нет. Пуанкаре почти сто лет назад знал, что в двумерном случае односвязна только сфера, и задался аналогичным вопросом для трехмерной сферы - множества точек в четырехмерном пространстве, равноудаленных от некоторой точки. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики до сих пор ищут ответ.
Доказательство этой проблемы Гильберта предоставил в какой-то матжурнал некий Перельман, выпускник ЛГУ матмех кафедра высшей геометрии. В том журнале сказали, что им нужно 2 года на проверку доказательства, потом они его опубликуют, если ещё в течении нескольких месяцев не поступит от читателей опровержение доказательства будет передано Перельману 10^6 долларов. Пока были найдены только маленькие неточности, в целом вроде с доказательством всё в порядке.

aksirob

Куда доказательства слать?

electricbird

там же ясно написано - в любой научный журнал, пригодный для таких публикаций. можешь в мат. заметки послать

aksirob

А если хуйню пошлю, ну или не достаточно строгое доказательство будет?

zuzaka

Приличные журналы реферируются. Так что лично ты туда не попадешь, даже если напишешь что-то очень крутое.

naufragio

Российский ученый Григорий Перельман, возможно, нашел доказательство гипотезы Пуанкаре, одной из «семи математических задач тысячелетия», за решение которых назначена награда в размере одного миллиона долларов США.
В исходной форме гипотеза утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере. Гипотеза сформулирована Пуанкаре в 1904 г. Обощенная гипотеза Пуанкаре утверждает, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Исходный вариант является частным случаем обощенной гипотезы при n=3, и только в этом случае доказательство пока не получено. Доказательства для n≥5 получены в начале 1960-х почти одновременно Смейлом, независимо и другими методами Столлингсом (для n≥7, его доказательство было распространено на случаи n=5 и 6 Зееманом). Доказательство значительно более трудного случая n=4 было получено только в 1982 г. Фридманом (Филдсовская медаль 1986 г.). Попытки доказать гипотезу Пуанкаре, как успешные, так и неудачные, привели к многочисленным продвижениям в топологии многообразий. По информации Wikipedia.
В качестве иллюстрации гипотезы Пуанкаре обычно приводят пример с мячом и диском с отверстием посередине. Любая петля на поверхности мяча может быть стянута вдоль этой поверхности в точку. Однако, веревка, продетая сквозь отверстие диска, не может быть стянута без разрыва либо самого диска, либо петли. В данном контексте мяч является односвязной фигурой, а диск – нет.
Не так давно решение гипотезы было предложено Перельманом, выложившим свои изыскания в свободный доступ в интернете. По словам профессора Кейта Девлина из Стэндфордского университета в Калифорнии, изучавшего труды Перельмана, подход российского математика, по-видимому, верен. Правда, Девлин подчеркивает, что Перельман не желает ни с кем обсуждать свою работу и не выражает заинтересованности в деньгах, а поэтому проверка решения сильно затруднена, передает Компьюлента по сообщению Reuters.

naami_moloko

А, ну вот. Я собственно в ПОМИ о нём узнал...

stm7543347

веревка, продетая сквозь отверстие диска, не может быть стянута без разрыва либо самого диска, либо петли
Хм. Напишут тоже. Даже если и не продетая, а просто по параллели лежащая.
Оставить комментарий
Имя или ник:
Комментарий: