Посчитать (1+x)^(1/n)

gvkonder

x близко к 0, n - какое-то натуральное, можно только возводить в целую степень, складывать, вычитать, делить и умножать.
Меня глючит, или ряд тейлора для (1+x)^(1/3) не сходится ни при каких x, отличных от 0? У меня почему-то получилось, что модули коэффициентов растут примерно как факториал... а именно, коэффициенты вышли 1, 1/3, (1/3)*(-2/3 (1/3)*(-2/3)*(-5/3 (1/3)*(-2/3)*(-5/3)*(-8/3 (1/3)*(-2/3)*(-5/3)*(-8/3)*(-11/3)...

zuzaka

факториал в знаменателе забыл

zuzaka

кстати, и со знаками, по-моему, напортачил

iri3955

(1+x)^k = \Sum\limits_{i=0}^\infty x^i \left(\frac ki\right k вещественное,
где \left(\frac xn\right) = x(x-1x-2)\ldots(x-n+1)/n!

gvkonder

Про факториал - спасибо! Что-то совсем всё забыл...
А со знаками что не так? У меня сейчас всё работает...

gvkonder

А по-русски можно?

zuzaka

почему там +5/3, +11/3? Они все с минусом идут

iri3955

(1+x)^k = Сумма по i от 0 до бесконечности A_ki * x^i , k вещественное,
где A_ki = k(k-1k-2)...(k-i+1)/i!
Это то же самое, что тебе уже сказали

gvkonder

Со знаками - это ты глазастый... но это была всего лишь опечатка в посте...
Оставить комментарий
Имя или ник:
Комментарий: